We invite you to suggest a name for our next mission where we will fly our customers’ star names into space. The mission is scheduled for launch on November 5, 2015 and will fly from Spaceport America, New Mexico, where we have flown several times before. The winner of the contest will receive a mission patch that we have flown in space, together with a certificate of authenticity! Continue reading “Name that mission!”
Pluto will be in the Name A Star Live constellation Sagittarius when NASA’s New Horizons probe flies past Pluto on July 14, 2015. If you’ve named a star in Sagittarius, take out your Name A Star Live Star Chart and compare the position of your star to Pluto in the diagrams below!
The planets Jupiter and Venus dominate the evening skies this month, while Saturn is clearly visible between midnight and dawn. Moreover, there will be a total lunar eclipse on April 4. Continue reading “April’s Stars and Planets”
This is a good time go take a look at a comet that has astronomers abuzz! It’s called “Comet Lovejoy” and is currently in the Name A Star Live constellation Cassiopeia. Throughout most of the northern hemisphere of Earth Cassiopeia appears now as a huge “M” shape group of stars in the northwestern part of the night sky shortly after sunset, and then sinks below the horizon as the night progresses.
Astronomers using data from NASA’s Hubble Space Telescope and ground observation have found an unlikely object in an improbable place — a monster black hole lurking inside one of the tiniest galaxies ever known.
The black hole is five times the mass of the one at the center of our Milky Way galaxy. It is inside one of the densest galaxies known to date — the M60-UCD1 dwarf galaxy that crams 140 million stars within a diameter of about 300 light-years, which is only 1/500th of our galaxy’s diameter. M60-UCD1 is located in the Name A Star Live constellation Virgo.
If you lived inside this dwarf galaxy, the night sky would dazzle with at least 1 million stars visible to the naked eye. Our nighttime sky as seen from Earth’s surface shows 4,000 stars.
The finding implies there are many other compact galaxies in the universe that contain supermassive black holes. The observation also suggests dwarf galaxies may actually be the stripped remnants of larger galaxies that were torn apart during collisions with other galaxies rather than small islands of stars born in isolation.
“We don’t know of any other way you could make a black hole so big in an object this small,” said University of Utah astronomer Anil Seth, lead author of an international study of the dwarf galaxy published in Thursday’s issue of the journal Nature.
Seth’s team of astronomers used the Hubble Space Telescope and the Gemini North 8-meter optical and infrared telescope on Hawaii’s Mauna Kea to observe M60-UCD1 and measure the black hole’s mass. The sharp Hubble images provide information about the galaxy’s diameter and stellar density. Gemini measures the stellar motions as affected by the black hole’s pull. These data are used to calculate the mass of the black hole.
Black holes are gravitationally collapsed, ultra-compact objects that have a gravitational pull so strong that even light cannot escape. Supermassive black holes — those with the mass of at least one million stars like our sun — are thought to be at the centers of many galaxies.
The black hole at the center of our Milky Way galaxy has the mass of four million suns. As heavy as that is, it is less than 0.01 percent of the Milky Way’s total mass. By comparison, the supermassive black hole at the center of M60-UCD1, which has the mass of 21 million suns, is a stunning 15 percent of the small galaxy’s total mass.
“That is pretty amazing, given that the Milky Way is 500 times larger and more than 1,000 times heavier than the dwarf galaxy M60-UCD1,” Seth said.
One explanation is that M60-UCD1 was once a large galaxy containing 10 billion stars, but then it passed very close to the center of an even larger galaxy, M60, and in that process all the stars and dark matter in the outer part of the galaxy were torn away and became part of M60.
The team believes that M60-UCD1 may eventually be pulled to fully merge with M60, which has its own monster black hole that weighs a whopping 4.5 billion solar masses, or more than 1,000 times bigger than the black hole in our galaxy. When that happens, the black holes in both galaxies also likely will merge. Both galaxies are 50 million light-years away.
The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.
A small asteroid, designated 2014 RC, will safely pass very close to Earth on Sunday, Sept. 7, 2014. At the time of closest approach, based on current calculations to be about 2:18 p.m. EDT (1:18 p.m. CDT / 18:18 GMT), the asteroid will be roughly over New Zealand. From its reflected brightness, astronomers estimate that the asteroid is about 60 feet (20 meters) in size.
Asteroid 2014 RC was initially discovered on the night of August 31 by the Catalina Sky Survey near Tucson, Arizona, and independently detected the next night by the Pan-STARRS 1 telescope, located on the summit of Haleakala on Maui, Hawaii. Both reported their observations to the Minor Planet Center in Cambridge, Massachusetts. Additional follow-up observations by the Catalina Sky Survey and the University of Hawaii 88-inch (2.2-meter) telescope on Mauna Kea confirmed the orbit of 2014 RC.
At the time of closest approach, 2014 RC will be approximately one-tenth the distance from the center of Earth to the moon, or about 25,000 miles (40,000 kilometers). The asteroid’s apparent magnitude — a measure of how bright an object in the night sky appears to be — at that time will be about 11.5, rendering it unobservable to the unaided eye. However, amateur astronomers with small telescopes might glimpse the fast-moving appearance of this near-Earth asteroid.
The asteroid will pass below Earth and the geosynchronous ring of communications and weather satellites orbiting about 22,000 miles (36,000 kilometers) above our planet’s surface. While this celestial object does not appear to pose any threat to Earth or satellites, its close approach creates a unique opportunity for researchers to observe and learn more about asteroids.
While 2014 RC will not impact Earth, its orbit will bring it back to our planet’s neighborhood in the future. The asteroid’s future motion will be closely monitored, but no future threatening Earth encounters have been identified.
This new NASA/ESA Hubble Space Telescope image shows a beautiful spiral galaxy known as PGC 54493, located in the constellation of Serpens (The Serpent). This galaxy is part of a galaxy cluster that has been studied by astronomers exploring an intriguing phenomenon known as weak gravitational lensing.
This effect, caused by the uneven distribution of matter (including dark matter) throughout the universe, has been explored via surveys such as the Hubble Medium Deep Survey. Dark matter is one of the great mysteries in cosmology. It behaves very differently from ordinary matter as it does not emit or absorb light or other forms of electromagnetic energy — hence the term “dark.”
Even though we cannot observe dark matter directly, we know it exists. One prominent piece of evidence for the existence of this mysterious matter is known as the “galaxy rotation problem.” Galaxies rotate at such speeds and in such a way that ordinary matter alone — the stuff we see — would not be able to hold them together. The amount of mass that is “missing” visibly is dark matter, which is thought to make up some 27 percent of the total contents of the Universe, with dark energy and normal matter making up the rest. PGC 55493 has been studied in connection with an effect known as cosmic shearing. This is a weak gravitational lensing effect that creates tiny distortions in images of distant galaxies.
Credit: European Space Agency, ESA/Hubble & NASA, Acknowledgement: Judy Schmidt