Small Asteroid to Safely Pass Close to Earth Sunday

Asteroid trajectory
This graphic depicts the passage of asteroid 2014 RC past Earth on September 7, 2014. At time of closest approach, the space rock will be about one-tenth the distance from Earth to the moon. Times indicated on the graphic are Universal Time. Image credit: NASA/JPL-Caltech

A small asteroid, designated 2014 RC, will safely pass very close to Earth on Sunday, Sept. 7, 2014. At the time of closest approach, based on current calculations to be about 2:18 p.m. EDT (1:18 p.m. CDT / 18:18 GMT), the asteroid will be roughly over New Zealand. From its reflected brightness, astronomers estimate that the asteroid is about 60 feet (20 meters) in size.

Asteroid 2014 RC was initially discovered on the night of August 31 by the Catalina Sky Survey near Tucson, Arizona, and independently detected the next night by the Pan-STARRS 1 telescope, located on the summit of Haleakala on Maui, Hawaii. Both reported their observations to the Minor Planet Center in Cambridge, Massachusetts. Additional follow-up observations by the Catalina Sky Survey and the University of Hawaii 88-inch (2.2-meter) telescope on Mauna Kea confirmed the orbit of 2014 RC.

At the time of closest approach, 2014 RC will be approximately one-tenth the distance from the center of Earth to the moon, or about 25,000 miles (40,000 kilometers). The asteroid’s apparent magnitude — a measure of how bright an object in the night sky appears to be — at that time will be about 11.5, rendering it unobservable to the unaided eye. However, amateur astronomers with small telescopes might glimpse the fast-moving appearance of this near-Earth asteroid.

The asteroid will pass below Earth and the geosynchronous ring of communications and weather satellites orbiting about 22,000 miles (36,000 kilometers) above our planet’s surface. While this celestial object does not appear to pose any threat to Earth or satellites, its close approach creates a unique opportunity for researchers to observe and learn more about asteroids.

While 2014 RC will not impact Earth, its orbit will bring it back to our planet’s neighborhood in the future. The asteroid’s future motion will be closely monitored, but no future threatening Earth encounters have been identified.

For a heliocentric view of the orbit of asteroid 2014 RC with respect to Earth and other planets, visit: http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2014+RC&orb=1

New Hubble image of a beautiful, spiral galaxy!

PGC 54493

This new NASA/ESA Hubble Space Telescope image shows a beautiful spiral galaxy known as PGC 54493, located in the constellation of Serpens (The Serpent). This galaxy is part of a galaxy cluster that has been studied by astronomers exploring an intriguing phenomenon known as weak gravitational lensing.

This effect, caused by the uneven distribution of matter (including dark matter) throughout the universe, has been explored via surveys such as the Hubble Medium Deep Survey. Dark matter is one of the great mysteries in cosmology. It behaves very differently from ordinary matter as it does not emit or absorb light or other forms of electromagnetic energy — hence the term “dark.”

Even though we cannot observe dark matter directly, we know it exists. One prominent piece of evidence for the existence of this mysterious matter is known as the “galaxy rotation problem.” Galaxies rotate at such speeds and in such a way that ordinary matter alone — the stuff we see — would not be able to hold them together. The amount of mass that is “missing” visibly is dark matter, which is thought to make up some 27 percent of the total contents of the Universe, with dark energy and normal matter making up the rest. PGC 55493 has been studied in connection with an effect known as cosmic shearing. This is a weak gravitational lensing effect that creates tiny distortions in images of distant galaxies.

Credit: European Space Agency, ESA/Hubble & NASA, Acknowledgement: Judy Schmidt

A Beautiful Cluster of Stars!

IC 4499
This new NASA/ESA Hubble Space Telescope image shows the globular cluster IC 4499.

Globular clusters are big balls of old stars that orbit around their host galaxy. It has long been believed that all the stars within a globular cluster form at the about same time, a property which can be used to determine the cluster’s age. For more massive globulars however, detailed observations have shown that this is not entirely true — there is evidence that they instead consist of multiple populations of stars born at different times. One of the driving forces behind this behavior is thought to be gravity: more massive globulars manage to grab more gas and dust, which can then be transformed into new stars.

IC 4499 is a somewhat special case. Its mass lies somewhere between low-mass globulars, which show a single generation build-up, and the more complex and massive globulars which can contain more than one generation of stars. By studying objects like IC 4499 astronomers can therefore explore how mass affects a cluster’s contents. Astronomers found no sign of multiple generations of stars in IC 4499 — supporting the idea that less massive clusters in general only consist of a single stellar generation.

Hubble observations of IC 4499 have also helped to pinpoint the cluster’s age: observations of this cluster from the 1990s suggested a puzzlingly young age when compared to other globular clusters within the Milky Way. However, since those first estimates new Hubble data been obtained, and it has been found to be much more likely that IC 4499 is actually roughly the same age as other Milky Way clusters at approximately 12 billion years old.

Credit: ESA/Hubble & NASA

Beautiful Space Imagery

Here are some beautiful space photos and videos that have been posted on the Internet recently. Enjoy!

Entitled “New England Nights,” this is an absolutely wonderful compilation of panoramas, timelapses, and still photos of the night sky in Maine and New Hampshire.

Apollo 11 astronaut
Apollo 11 astronaut Buzz Aldrin on the lunar surface

In tribute to the annual celebration of the Apollo 11 lunar landing, July 20, 1969, we’re posting this famous photo of Astronaut Buzz Aldrin.

Stunning Night Sky Images: Earth & Sky Photo Contest 2014!

NASA video of astronauts on the International Space Station getting in the World Cup spirit!

Kittens in Space!

Hubble Eyes Golden Rings of Star Formation

NGC 3081

Taking center stage in this new NASA/ESA Hubble Space Telescope image is a beautiful galaxy known as NGC 3081, set against an assortment of glittering galaxies in the distance. Located in the constellation of Hydra (The Sea Serpent), NGC 3081 is located over 86 million light-years from us. It is known as a type II Seyfert galaxy, characterized by its dazzling nucleus.

NGC 3081 is seen here nearly face-on. Compared to other spiral galaxies, it looks a little different. The galaxy’s barred spiral center is surrounded by a bright loop known as a resonance ring. This ring is full of bright clusters and bursts of new star formation, and frames the supermassive black hole thought to be lurking within NGC 3081 — which glows brightly as it hungrily gobbles up in-falling material.

These rings form in particular locations known as resonances, where gravitational effects throughout a galaxy cause gas to pile up and accumulate in certain positions. These can be caused by the presence of a “bar” within the galaxy, as with NGC 3081, or by interactions with other nearby objects. It is not unusual for rings like this to be seen in barred galaxies, as the bars are very effective at gathering gas into these resonance regions, causing pile-ups which lead to active and very well-organized star formation.

Hubble snapped this magnificent face-on image of the galaxy using the Wide Field Planetary Camera 2. This image is made up of a combination of ultraviolet, optical, and infrared observations, allowing distinctive features of the galaxy to be observed across a wide range of wavelengths.

Image credit: ESA/Hubble & NASA; acknowledgement: R. Buta (University of Alabama)
  Text credit: European Space Agency

Hubble Space Telescope’s New, Beautiful Deep Space Image!

Hubble Ultra Deep Field image
This is a composite image showing the visible and near infrared light spectrum collected from Hubble’s ACS and WFC3 instruments over a nine-year period. Image Credit: NASA/ESA

Astronomers using NASA’s Hubble Space Telescope have assembled a comprehensive picture of the evolving universe – among the most colorful deep space images ever captured by the 24-year-old telescope.

Researchers say the image, in new study called the Ultraviolet Coverage of the Hubble Ultra Deep Field, provides the missing link in star formation. The Hubble Ultra Deep Field 2014 image is a composite of separate exposures taken in 2003 to 2012 with Hubble’s Advanced Camera for Surveys and Wide Field Camera 3.

Astronomers previously studied the Hubble Ultra Deep Field (HUDF) in visible and near-infrared light in a series of images captured from 2003 to 2009. The HUDF shows a small section of space in the southern-hemisphere constellation Fornax. Now, using ultraviolet light, astronomers have combined the full range of colors available to Hubble, stretching all the way from ultraviolet to near-infrared light. The resulting image — made from 841 orbits of telescope viewing time — contains approximately 10,000 galaxies, extending back in time to within a few hundred million years of the big bang.

Prior to the Ultraviolet Coverage of the Hubble Ultra Deep Field study of the universe, astronomers were in a curious position. Missions such as NASA’s Galaxy Evolution Explorer (GALEX) observatory, which operated from 2003 to 2013, provided significant knowledge of star formation in nearby galaxies. Using Hubble’s near-infrared capability, researchers also studied star birth in the most distant galaxies, which appear to us in their most primitive stages due to the significant amount of time required for the light of distant stars to travel into a visible range. But for the period in between, when most of the stars in the universe were born — a distance extending from about 5 to 10 billion light-years — they did not have enough data.

“The lack of information from ultraviolet light made studying galaxies in the HUDF like trying to understand the history of families without knowing about the grade-school children,” said principal investigator Harry Teplitz of Caltech in Pasadena, California. “The addition of the ultraviolet fills in this missing range.”

Ultraviolet light comes from the hottest, largest and youngest stars. By observing at these wavelengths, researchers get a direct look at which galaxies are forming stars and where the stars are forming within those galaxies.

Studying the ultraviolet images of galaxies in this intermediate time period enables astronomers to understand how galaxies grew in size by forming small collections of very hot stars. Because Earth’s atmosphere filters most ultraviolet light, this work can only be accomplished with a space-based telescope.

“Ultraviolet surveys like this one using the unique capability of Hubble are incredibly important in planning for NASA’s James Webb Space Telescope,” said team member Dr. Rogier Windhorst of Arizona State University in Tempe. “Hubble provides an invaluable ultraviolet light dataset that researchers will need to combine with infrared data from Webb. This is the first really deep ultraviolet image to show the power of that combination.”

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

For Hubble Ultra Deep Field 2014 images and more information about Hubble, visit: http://hubblesite.org/news/2014/27 and
http://www.nasa.gov/hubble

New Photo of a Beautiful, Red Stellar Nursery!

Gum 41
Gum 41

This new image from ESO’s La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that causes the surrounding hydrogen to glow with a characteristic red hue. Continue reading “New Photo of a Beautiful, Red Stellar Nursery!”

Beautiful space imagery

Here are some beautiful space photos and videos that have been posted on the Internet recently. Enjoy!

Here’s a recipe for how to bake scientifically accurate cake planets!

Created by self-taught chef Rhiannon from Cakecrumbs (be sure to check out this link, in addition to the video, for recipe details), these spherical cakes are scientifically accurate representations of the subsurface on Jupiter and Earth, right from the outer atmosphere down through the crust, mantle, and inner core. To see how they did it, watch the video! Continue reading “Beautiful space imagery”

A celestial break from your taxes!

If you’re up late doing your U.S. federal income taxes the evening of April 14, you might want to take a couple of breaks and go outside to behold some celestial wonders that Mother Nature will display for us over the nighttime of April 14-15, 2014.

Mars, the Moon and Saturn
Mars, the Moon and Saturn will put on a show for late-night tax preparers — and others! — during the overnight period of April 14-15.

Continue reading “A celestial break from your taxes!”